A list of statements/theorems that you should be able to prove.

10.

LI f: X —Yisamap and Ay, Ay C X, By, By C Y are subsets, then

SH BN By) = (BN fH(By)
SN BIUBy) = fH(B1) U f(By)
f(A1U Ag) = f(A1) U f(A2).

If A and B are countable sets, then A x B is countable.

. The set of rationals is countable.
. The set of infinite sequences whose elements are all 0 or 1 is uncountable.

. Suppose that M, N are subsets of a metric space X. The closure operation satisfies the

following properties:

(a) If M C N then [M] C [N].
(b) [[M]] = [M].

() [MUN] = [M]UN].

(@) [0]=0.

. Closed and open subsets of a metric space satisfy the following properties:

The intersection of an arbitrary collection of closed sets is closed.

(a)
(b)
()

)

(d) The union of an arbitrary collection of open sets is open.

The union of finitely many closed sets is closed.

The intersection of finitely many open sets is open.

A subset M C R in a metric space R is open if and only if the complement R\ M is closed.

. Every convergent sequence in a metric space is a Cauchy sequence.

(Nested sphere theorem) Let R be a complete metric space, and B, (zx) a sequence of closed
balls in R such that B o
BT1 (xl) D) Br2 (ajg) Do,

and 7, — 0 as k — oco. Then the intersection (s, By, (2) is non-empty.

(Baire’s theorem) Let R be a complete metric space, and suppose that

R=] A
k=1

for a sequence of subsets Ay C R. Then it is not possible that all of the Ay are nowhere
dense.
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Let R be a complete metric space, and F': R — R a map such that for some a < 1 we have

p(F(x), F(y)) < ap(z,y)
for all x,y € R. Then there exists a unique point € R for which F(z) = x.

A map f: X — Y between topological spaces is continuous, if and only if f~1(U) is open for
every open set U C Y.

The interval [0, 1] is connected.
If a topological space X is path connected, then it is connected.
Let f: X — Y be continuous, and suppose that X is connected. Then f(X) is connected.

A topological space X is compact if and only if every centered system of closed sets in X has
non-empty intersection.

If X is compact and F' C X is closed, then F' is compact.

Suppose that X is a Hausdorff space, and K C X is compact. Then K is closed.
Let X be compact, and f : X — Y continuous. Then f(X) is compact.

Any sequence in a compact metric space has a convergent subsequence.

A metric space R is compact if and only if it is complete and totally bounded.

A subset M C Cjo 1), with the distance p(f, g) = sup,cp 1) |f(2) — g(z)| is totally bounded, if
and only if it is uniformly bounded and equicontinuous.

If F: X — R is continuous, and the metric space X is compact, then F' is uniformly
continuous.

If F: X — R is continuous and X is compact, then F(X) is bounded, and F' achieves its
infimum and supremum.

If F: X — R is lower semicontinuous and X is compact, then F(X) is bounded from below,
and F' achieves its infimum.

If V is a normed linear space and W C V is a closed subspace, then the quotient V/W is also
a normed linear space with the norm

llllvyw = inf{{lz —yllv; y € W}

If a linear functional f: V' — R on a normed linear space is continuous at a point, then it is
continuous everywhere.

A linear functional f : V' — R on a normed linear space is continuous if and only if it is
bounded.

If V is a normed linear space, then its conjugate space V* is complete, i.e. it is a Banach
space.

If V is a normed linear space and x € V' a non-zero element, then there is a continuous linear
functional f € V* such that ||f]| =1 and f(z) = ||z



